
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 08 – Strings (and More)

www.umbc.edu

Last Class We Covered

• Lists and what they are used for

– Getting the length of a list

– Operations like append() and remove()

– Iterating over a list using a while loop

• Sentinel loops

• Priming read

2

www.umbc.edu3

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To better understand the string data type

– Learn how they are represented

– Learn about and use some of their built-in
functions

• To cover some other miscellaneous details

– Learn about the importance of constants

– Be able to implement while loops
with Boolean flags

4

www.umbc.edu5

Strings

www.umbc.edu

The String Data Type

• Text is represented in programs by
the string data type

• A string is a sequence of characters
enclosed within quotation marks (")
or apostrophes (')

– Sometimes called
double quotes or
single quotes

6 Image from pixabay.com

www.umbc.edu

Getting Strings as Input

• Using input() automatically gets a string

>>> firstName = input("Please enter your name: ")

Please enter your name: Shakira

>>> type(firstName)

<class 'str'>

>>> print(firstName, firstName)

Shakira Shakira

7

www.umbc.edu

Accessing Individual Characters

• We can access the individual characters
in a string through indexing

– Characters are the letters, numbers, spaces, and
symbols that make up a string

• The characters in a string are numbered
starting from the left, beginning with 0

– Just like in lists!

8

www.umbc.edu

Syntax of Accessing Characters

• The general form is

strName[expression]

• Where strName is the name of the string
variable and expression determines
which character is selected from the string

9

www.umbc.edu

Quick Note: Python Interpreter

• Sometimes in class and the slides, you’ll see
use of Python’s “interactive” interpreter

– Evaluates each line of code as it’s typed in
>>> print("Hello")

Hello

>>> 4 + 7

11

>>>

– To use the interpreter, enable Python 3,
then type “python” into the command line

10

>>> is where the
user types their code

lines without a “>>>”
are Python’s response

www.umbc.edu

Example String

>>> greet = "Hello Bob"

>>> greet[0]

'H'

>>> print(greet[0], greet[2], greet[4])

H l o

>>> x = 8

>>> print(greet[x - 2])

B

11

0 1 2 3 4 5 6 7 8

H e l l o B o b

www.umbc.edu

Example String

12

0 1 2 3 4 5 6 7 8

H e l l o B o b

• In a string of n characters, the last
character is at position n-1 since we
start counting with 0

• So how can we access the last letter,
regardless of the string’s length?
greet[len(greet) – 1]

www.umbc.edu13

Substrings and Slicing

www.umbc.edu

Substrings

• Indexing only returns a single character
from the entire string

• We can access a substring using
a process called slicing

– Substring: a (sub)part of another string

– Slicing: we are slicing off a portion of the string

14

www.umbc.edu

Slicing Syntax

• The general form is

strName[start:end]

• start and end must both be integers

– The substring begins at index start

– The substring ends before index end

• The letter at index end is not included

15

www.umbc.edu

Slicing Examples

16

0 1 2 3 4 5 6 7 8

H e l l o B o b

>>> greet[0:2]

'He'

>>> greet[7:9]

'ob'

>>> greet[:5]

'Hello'

>>> greet[1:]

'ello Bob'

>>> greet[:]

'Hello Bob'

www.umbc.edu

Specifics of Slicing

• If start or end are missing, then the
start or the end of the string are used instead

• The index of end must come after
the index of start

– What would the substring greet[1:1] be?

''

– An empty string!

17

www.umbc.edu

Forming New Strings - Concatenation

• We can put two or more strings together to
form a longer string

• Concatenation “glues” two strings together

>>> "Peanut Butter" + "Jelly"

'Peanut ButterJelly'

>>> "Peanut Butter" + " & " + "Jelly"

'Peanut Butter & Jelly'

18

www.umbc.edu

Rules of Concatenation

• Concatenation does not automatically include
spaces between the strings
>>> "Smash" + "together"

'Smashtogether'

• Concatenation can only be done with strings!

– So how would we concatenate an integer?

>>> "CMSC " + str(201)

'CMSC 201'

19

www.umbc.edu

Uses for Concatenation

• input() only accepts a single string

– Can’t use commas like we do with print()

• In order to create a single string for
input(), you must use concatenation

classNum = 201

grade = input("Grade in " + str(classNum) + "? ")

20

www.umbc.edu

String Operators in Python

• All of this also applies to lists!

– Two lists can be concatenated together

– A sublist can be sliced from another list
21

Operator Meaning

+

STRING[#]

STRING[#:#]

len(STRING)

Concatenation

Indexing

Slicing

Length

www.umbc.edu

Just a Bit More on Strings

• Python has many, many ways to interact with
strings, and we will cover them in detail soon

• For now, here are two very useful functions:

s.lower() – copy of s in all lowercase letters

s.upper() – copy of s in all uppercase letters

• Why would we need to use these?

–Remember, Python is case-sensitive!

22

www.umbc.edu23

Constants

www.umbc.edu

What are Constants?

• Constants are values that are not generated
by the user or by the code

–But are used a great deal in the program

• Constants should be ALL CAPS with a “_”
(underscore) to separate the words

– This follows CMSC 201 Coding Standards

24

www.umbc.edu

Using Constants

• Calculating the total for a shopping order
MD_TAX = 0.06

subtotal = input("Enter subtotal:")

subtotal = float(subtotal)

tax = subtotal * MD_TAX

total = tax + subtotal

print("Your total is:", total)

25

easy to update if tax rate changes

we know
exactly what

this number is

www.umbc.edu

“Magic” Numbers

• “Magic” numbers are numbers used directly in
the code – should be replaced with constants

• Examples:

– Mathematical numbers (pi, e, etc.)

– Program properties (window size, min and max)

– Important values (tax rate, maximum number of
students, credits required to graduate, etc.)

26 Image from wikimedia.org

www.umbc.edu

“Magic” Numbers Example

• You’re looking at the code for a virtual casino

– You see the number 21

– What does it mean?

• Blackjack? Drinking age? VIP room numbers?

• Constants make it easy to update values – why?

– Don’t have to figure out which “21”s to change

27

if value < 21:

if customerAge < DRINKING_AGE:





www.umbc.edu

“Magic” Everything

• Can also have “magic” characters or strings

– Use constants to prevent any “magic” values

• For example, a blackjack program that uses
the strings “H” for hit, and “S” for stay

– Which of these options is easier to understand?

– Which is easier to update if it’s needed?

28

if userChoice == "H": 

if userChoice == HIT: 

www.umbc.edu

Are Constants Really Constant?

• In some languages (like C, C++, and Java), you
can create variables that CANNOT be changed

• This is not possible with Python variables

–Part of why coding standards are so important

– If you see code that changes the value of a
variable called MAX_ENROLL, you know
that’s a constant, and shouldn’t be changed

29

www.umbc.edu

Where Do Constants Go?

• Constants go before main(),
after your header comment

• All variables
that aren’t
constants must
be inside of
main()

30

File: hw2_part1.py

Author: Dr. Gibson

etc...

MAX = 28

WEEK = 7

def main():

date = int(input("Please enter day: "))

if date >= 1 and date <= MAX:

etc...

main()

www.umbc.edu31

Boolean Flags

www.umbc.edu

Complex Conditionals

• Sometimes, a while loop has many
restrictions or requirements

– Expressing them in one giant conditional is
difficult, or maybe even impossible

• Instead, break the problem down into the
separate parts, and use a single Boolean
“flag” value as the loop variable

32

www.umbc.edu

Complex Examples

• Multiple requirements to satisfy

– Password must be at least 8 characters long,
no longer than 20 characters, and have no
spaces or underscores

• Multiple ways to satisfy the requirements

– Grade must be between 0 and 100,
unless extra credit is allowed, in which
case it can be over 100

33

www.umbc.edu

Boolean Flags

• A Boolean value used to control the while loop

–Communicates if the requirements
have been satisfied yet

• Value should evaluate to True

while the requirements have
not been met

34 Image from pixabay.com

www.umbc.edu

General Layout – Multiple Reqs

• Start the while loop by

– Getting the user’s input

– Assuming that all requirements are satisfied

• (Set the Boolean flag so that the loop would exit)

• Check each requirement individually

– For each requirement, if it isn’t satisfied,
change the Boolean flag so the loop repeats

• (Optionally, print out what the failure was)

35

www.umbc.edu

General Layout – Multiple Ways

• Start the while loop by

– Getting the user’s input

– Don’t assume the requirements have been met

• (Do not change the Boolean flag at the start of the loop)

• Check each way of satisfying the requirements

– If one of the ways satisfies the requirements,
change the Boolean flag so the loop doesn’t repeat

36

www.umbc.edu

Time for…

37

www.umbc.edu

Announcements

• HW 3 is out on Blackboard now

– Complete the Academic Integrity Quiz to see it

– Due by Friday (Feb 24th) at 8:59:59 PM

• Midterm is in class, March 15th and 16th

– Week before Spring Break

– Survey #1 will be released that week as well

38

